Sinusförmige Strom- und Spannungsverläufe

Anwendungen von Sinusförmigen Spannungsverläufen

1

Verwendung elektrischer Energie

Copyright by Prof. Dr. Christian Siegl

Elektromotoren

Quelle: http://de.wikipedia.org

Kommunikationstechnik: Radio - Mobilfunk - Telefon

Quelle: http://de.wikipedia.org

Vorteil von Wechselstrom gegenüber Gleichstrom

- Transformation verschiedener Spannungsebenen
- Schaltvorgang möglich
- Signalübertragung mittels elektro-magnetischer Wellen
- Informationsübertragung im Frequenzmultiplex (mehrere parallele Kanäle)

Beschreibung Sinusförmiger Schwingungen

Sinusförmiger Spannungsverlauf über der Zeit

7

Mathematische Beschreibung einer Sinus-Funktion

 $f(x) = \sin(x)$

Eigenschaften der Sinus-Funktion

- Argument x ist ein Winkel im Bogenmaß
- Funktion ist periodisch alle Vielfachen von 2π (entspricht 360°)
- Nullstellen Vielfachen von π (entspricht 180°)

Mathematische Beschreibung von Schwingungen als Zeitsignal I

Normierung des Argumentes auf Periodendauer: $x = rac{t}{T} \cdot 2\pi$

$$y(t) = \hat{Y} \cdot \sin\left(2\pi \cdot rac{t}{T}
ight) = \hat{Y} \cdot \sin\left(2\pi f \cdot t
ight)$$

Parameter der Schwingung

- Amplitude: \hat{Y}
- Periodendauer: $T = \frac{1}{f}$
- Frequenz (Schwingungen pro Sekunde): $f = rac{1}{T}$

Mathematische Beschreibung von Schwingungen als Zeitsignal II

Zeitliche Verschiebung der Sinus-Funktion um Offset t_0

$$egin{aligned} y(t) &= \hat{Y} \cdot \sin\left(2\pi f \cdot (t-t_0)
ight) = \hat{Y} \cdot \sin\left(2\pi f \cdot t - 2\pi f \cdot t_0
ight)) = \hat{Y} \cdot \sin\left(2\pi f \cdot t - 2\pi \cdot rac{t_0}{T}
ight) = \ &= \hat{Y} \cdot \sin\left(2\pi f \cdot t + arphi_0
ight) \end{aligned}$$

Zeit-Offset als Phasenwinkel

$$arphi_0 = -2\pi \cdot f \cdot t_0 = -2\pi \cdot rac{t_0}{T}$$
 .

Sinusförmige Schwingung als Projektion eines drehenden Zeigers

Allgemeine Beschreibung von sinusförmigen Strömen oder Spannungen

$$y(t) = \hat{Y} \sin(arphi(t))$$
 mit $arphi(t) \in [0, \, 2\pi[$

Projektion der Drehung eines Zeigers mit zeitveränderlichem Winkel arphi(t)

– Kreisfrequenz:
$$\omega=2\pi f=rac{2\pi}{T}$$

Interpretation des zeitveränderlichen Drehzeigers

Übliche Beschreibung des zeitveränderlichen Winkels $\varphi(t)$ im *Bogenmaß* (mit Einheit *Radiant*):

$$arphi(t)\in [0\dots 2\pi] \qquad [arphi(t)]=\mathrm{rad}$$

Zeitliche Änderung des Winkels ist konstant und wird als *Winkelgeschwindigkeit* oder *Kreisfrequenz* bezeichnet:

$$\omega = rac{\mathrm{d}}{\mathrm{d}t} arphi(t) \qquad [\omega] = rac{\mathrm{rad}}{\mathrm{s}}$$

Initialer Winkel beit = 0 wird als *Phasenwinkel* bezeichnet:

$$arphi(t=0)=arphi_0$$

Somit gilt für den zeitlich veränderlichen Winkel

$$arphi(t) = \omega t + arphi_0$$

Periodendauer - Frequenz - Kreisfrequenz

Charakteristische Parameter einer sinusförmigen Schwingung

Allgemeine Beschreibung einer sinusförmigen Schwingung

 $y(t) = \hat{Y} \sin(\omega t + arphi_0)$

Charakteristische Parameter

- Amplitude: \hat{Y}
- Kreisfrequenz: $\omega = 2\pi f = rac{2\pi}{T}$
- Phasenwinkel: φ_0
- Periodendauer: $T = \frac{1}{f} = \frac{2\pi}{\omega}$
- Frequenz: $f=rac{\omega}{2\pi}=rac{1}{T}$

Beschreibung sinusförmiger Schwingungen in der Ebene

Ortsvektor des Drehzeigers in der 2D-Ebene

$$ec{y}(t) = egin{pmatrix} ullet y_1(t) \ ullet y_2(t) \end{pmatrix} = egin{pmatrix} \hat{Y} \cdot \cos\left(arphi(t)
ight) \ \hat{Y} \cdot \sin\left(arphi(t)
ight) \end{pmatrix} \end{pmatrix} = \hat{Y} \cdot egin{pmatrix} \cos\left(arphi(t)
ight) \ \sin\left(arphi(t)
ight) \end{pmatrix} = \hat{Y} \cdot egin{pmatrix} \cos\left(arphi(t)
ight) \ \sin\left(arphi(t)
ight) \end{pmatrix} \end{pmatrix} = \hat{Y} \cdot egin{pmatrix} \cos\left(arphi(t)
ight) \ \sin\left(arphi(t)
ight) \end{pmatrix} \end{bmatrix} = \hat{Y} \cdot egin{pmatrix} \cos\left(arphi(t)
ight) \ \sin\left(arphi(t)
ight) \end{pmatrix} \end{bmatrix} = \hat{Y} \cdot egin{pmatrix} \cos\left(arphi(t)
ight) \ \sin\left(arphi(t)
ight) \end{pmatrix} \end{bmatrix} = \hat{Y} \cdot egin{pmatrix} \cos\left(arphi(t)
ight) \ \sin\left(arphi(t)
ight) \end{pmatrix} \end{bmatrix}$$

Beschreibung sinusförmiger Schwingungen in der komplexen Ebene

Dreh-Zeiger in der komplexen Zahlenebene:

$$\underline{y}(t) = \hat{Y} \cdot \cos(\omega t + arphi_0) + \hat{Y} \cdot \mathrm{j} \sin(\omega t + arphi_0) = \hat{Y} \cdot \mathrm{e}^{\mathrm{j}(\omega t + arphi_0)}$$

Zusammenhang zum reellen zeitabhängigen Schwingungsverlauf ergibt sich mittels:

 $y(t) = \operatorname{Im} \left\{ \underline{y}(t)
ight\} = \hat{Y} \sin(\omega t + arphi_0)$

Der komplexe Drehzeiger wird auch als *Phasor* bezeichnet.

Eigenschaften der Phasordarstellung von Schwingungen

Vorteil der Phasordarstellung

Amplituden- und Phasenbeziehungen zwischen verschiedenen Schwingungen sind leichter ersichtlich.

Nachteil der Phasordarstellung

Die Vorstellung von rotierenden Zeigern ist gewöhnungsbedürftig und schwierig zu skizzieren.

Copyright by Prof. Dr. Christian Siegl

Anwendung der Phasoren auf Widerstand, Kondensator und Induktivität

Zusammenhang von Spannung und Strom bei einem Ohm'schen Widerstand

Zusammenhang zwischen Spannung und Strom ergibt sich über Ohm'sche Gesetz:

Beim Ohm'schen Widerstand folgen Spannung und Strom der gleichen Sinus-Funktion.

Zusammenhang von Spannungs- und Stromphasoren bei einem Ohm'schen Widerstand

Für den Spannungs- und Stromphasor gilt

$$egin{aligned} & \underline{u}_R(t) = \underline{u}(t) = \hat{U} \cdot \mathrm{e}^{\mathrm{j}\omega t} \ & \\ & \underline{i}_R(t) = rac{\hat{U}}{R} \cdot \mathrm{e}^{\mathrm{j}\omega t} \end{aligned}$$

Spannungs- und Stromphasor sind phasengleich, womit ebenfalls das Ohm'sche Gesetz gilt:

$$\frac{\underline{u}_{R}(t)}{\underline{i}_{R}(t)}=R$$

Spannungs- und Stromverlauf am Ohm'schen Widerstand

Zusammenhang zwischen Spannung und Strom am Kondensator

Betrachtung der reellen Verläufe von Spannung und Strom am Kondensator

$$egin{aligned} &u_C(t) = u(t) = \hat{U}\sin(\omega t) \ &i_C(t) = Crac{\mathrm{d}}{\mathrm{d}t}u_C(t) = \hat{U}\cdot\omega C\cdot\cos(\omega t) \end{aligned}$$

Phasenverschiebung zwischen Strom und Spannung am Kondensator

 $u(t)=\hat{U}\sin(\omega t)$,

 $C = \begin{bmatrix} u_C(t) \\ u_C(t) \end{bmatrix}$

Zusammenhang zwischen Spannungs- und Stromphasoren am Kondensator

Für den Spannungs- und Stromphasor gilt

$$\underline{u}_C(t) = \underline{u}(t) = \hat{U} e^{j\omega t}$$

 $\underline{i}_C(t) = C \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{u}_C(t) = C \cdot \frac{\mathrm{d}}{\mathrm{d}t} \hat{U} e^{j\omega t} = C \cdot j\omega \cdot \hat{U} e^{j\omega t} = C \cdot j\omega \cdot \underline{u}_C(t)$

Bei Betrachtung von Phasoren kann der Differentialoperator $\frac{d}{dt}$ durch Multiplikation mit j ω ersetzt werden.

$$rac{\mathrm{d}}{\mathrm{d}t} \longrightarrow \mathrm{j}\omega$$

Damit ergibt sich ein konstantes Verhältnis aus Spannungs- und Stromphasor

$$rac{\underline{u}_C(t)}{\underline{i}_C(t)} = rac{1}{\mathrm{j}\omega C} = \underline{Z}_C$$

Dieses Verhältnis wird als Impedanz bezeichnet und lässt sich als komplexer Widerstand interpretieren.

Ein komplexer Leitwert wird als Admittanz \underline{Y}_C bezeichnet.

Reele Zeitverläufe im Vergleich mit komplexen Drehzeigern

Vergleich von Spannungs- und Stromphasor beim Kondensator

Vergleich der Phasenbeziehung zwischen Spannung und Strom beim Kondensator

$$egin{aligned} & \underline{u}_C(t) = \hat{U} \mathrm{e}^{\mathrm{j}\omega t} = \hat{U} \mathrm{e}^{\mathrm{j}(\omega t+0)} \ & \\ & \underline{i}_C(t) = \mathrm{j}\omega C \cdot \hat{U} \mathrm{e}^{\mathrm{j}\omega t} = \mathrm{e}^{\mathrm{j}\frac{\pi}{2}} \cdot \omega C \cdot \hat{U} \mathrm{e}^{\mathrm{j}\omega t} = \omega C \cdot \hat{U} \mathrm{e}^{\mathrm{j}(\omega t+\frac{\pi}{2})} \end{aligned}$$

Multiplikation mit der imaginären Einheit j bewirkt eine Drehung des Phasors um $\frac{\pi}{2}$ oder 90° in mathematisch positiver Richtung, d.h. nach links. Somit eilt beim Kondensator der Stromzeiger dem Spannungszeiger um $\frac{\pi}{2}$ oder 90° voraus.

Zusammenhang zwischen Strom und Spannung an einer Induktivität

Erregung der Induktivität mit einer Stromquelle

$$i(t) = \hat{I}\sin(\omega t)$$

Betrachtung der reelen Verläufe von Strom und Spannung:

$$egin{aligned} &i_L(t)=i(t)=\hat{I}\sin(\omega t)\ &u_L(t)=Lrac{\mathrm{d}}{\mathrm{d}t}i_L(t)=\hat{I}\cdot\omega L\cdot\cos(\omega t) \end{aligned}$$

Phasenverschiebung zwischen Strom und Spannung bei einer Induktivität

Copyright by Prof. Dr. Christian Siegl

Zusammenhang zwischen Strom- und Spannungsphasor an einer Induktivität

Für den Strom- und Spannungsphasor gilt:

$$egin{aligned} & \underline{i}_L(t) = \underline{i}(t) = \hat{I} \mathrm{e}^{\mathrm{j}\omega t} \ & \underline{u}_L(t) = L \cdot rac{\mathrm{d}}{\mathrm{d}t} \underline{i}_L(t) \end{aligned}$$

Auch hier lässt sich der Differentialoperator $\frac{d}{dt}$ durch j ω ersetzen:

$$\underline{u}_L(t) = L \cdot \mathrm{j}\omega \cdot \underline{i}_L(t) = \mathrm{j}\omega L \cdot \underline{i}_L(t)$$

Damit gilt für den komplexen Widerstand oder die Impedanz der Induktivität

$$rac{\underline{u}_L(t)}{\underline{i}_L(t)} = \underline{Z}_L = \mathrm{j}\omega L$$

Vergleich der reelen Zeitverläufe mit Phasoren an einer Induktivität

Verlgeich von Strom- und Spannungsphasor bei der Induktivität

Vergleich der Phasenbeziehung zwischen Strom und Spannung an der Induktivität

$$egin{aligned} & \underline{i}_L(t) = \underline{i}(t) = \hat{I} \mathrm{e}^{\mathrm{j}(\omega t + 0)} \ & \underline{u}_L(t) = \mathrm{j}\omega L \cdot \hat{I} \mathrm{e}^{\mathrm{j}\omega t} = \mathrm{e}^{\mathrm{j}rac{\pi}{2}} \cdot \omega L \cdot \hat{I} \mathrm{e}^{\mathrm{j}\omega t} = \omega L \cdot \hat{U} \mathrm{e}^{\mathrm{j}(\omega t + rac{\pi}{2})} \end{aligned}$$

Multiplikation mit der imaginären Einheit j bewirkt eine Drehung des Phasors um $\frac{\pi}{2}$ oder 90° in mathematisch postiver Richtung, d.h. nach links. Somit eilt bei der Induktivität der Spannungszeiger dem Stromzeiger um $\frac{\pi}{2}$ oder 90° voraus.

Bei Induktivitäten tun die Ströme sich verspäten.

Copyright by Prof. Dr. Christian Siegl

Zusammenfassung der Phasenbeziehung an elektrischen Bauteilen

Das RC-Glied im Phasor-Bereich

Erregung einer Reihenschaltung aus Widerstand R und Kondensator C mit sinusförmiger Spannungsquelle

Phasor der Spannungsquelle: $\underline{u}(t) = \hat{U} \mathrm{e}^{\mathrm{j}\omega t}$

Gesucht: Zeitverläufe von

- Kondensatorspannung $\underline{u}_C(t)$
- Spannung über dem Widerstand $\underline{u}_R(t)$

– Strom $\underline{i}(t)$

Aus der Maschengleichung ergibt sich

$$\underline{u}(t) = \underline{u}_R(t) + \underline{u}_C(t) = R \cdot \underline{i}(t) + \underline{u}_C(t) = RC \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{u}_C(t) + \underline{u}_C(t)$$

Daraus ergibt sich eine gewöhnliche Differentialgleichung mit konstanten Koeffizienten:

$$rac{\mathrm{d}}{\mathrm{d}t} \overline{u}_C(t) + rac{1}{RC} \overline{u}_C(t) = rac{1}{RC} \overline{u}(t)$$

Copyright by Prof. Dr. Christian Siegl

Lösung der Differentialgleichung

Ersetzen des Differentialoperators $\frac{d}{dt}$ durch j ω ergibt algebraische Gleichung:

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}t} \overline{u}_C(t) + rac{1}{RC} \overline{u}_C(t) = rac{1}{RC} \overline{u}(t) \ &\mathrm{j}\omega \cdot \underline{u}_C(t) + rac{1}{RC} \overline{u}_C(t) = rac{\hat{U}}{RC} \mathrm{e}^{\mathrm{j}\omega t} \ &rac{u}{C}(t) \cdot \left(\mathrm{j}\omega + rac{1}{RC}
ight) = rac{\hat{U}}{RC} \mathrm{e}^{\mathrm{j}\omega t} \ &rac{u}{C}(t) \cdot \left(\mathrm{j}\omega + rac{1}{RC}
ight) = rac{\hat{U}}{RC} \mathrm{e}^{\mathrm{j}\omega t} \ &rac{u}{C}(t) \cdot rac{1 + \mathrm{j}\omega RC}{RC} = rac{\hat{U}}{RC} \mathrm{e}^{\mathrm{j}\omega t} \end{aligned}$$

Damit ergibt sich für den Phasor der Kondensatorspannung

$$\underline{u}_{C}(t) = rac{RC}{1+\mathrm{j}\omega RC} \cdot rac{\hat{U}}{RC} \mathrm{e}^{\mathrm{j}\omega t} = rac{\hat{U}}{1+\mathrm{j}\omega RC} \mathrm{e}^{\mathrm{j}\omega t}$$

Phasor der Kondensatorspannung

Berechnung des Phasors der Kondensatorspannung nach Betrag und Phase

$$\begin{split} \underline{u}_{C}(t) &= \frac{\hat{U}}{1 + j\omega RC} e^{j\omega t} = \frac{\hat{U}}{\sqrt{1 + (\omega RC)^{2}} \cdot e^{j \arctan(\omega RC)}} e^{j\omega t} = \frac{\hat{U}}{\sqrt{1 + (\omega RC)^{2}}} e^{j\omega t} \cdot e^{-j \arctan(\omega RC)} = \\ &= \frac{\hat{U}}{\sqrt{1 + (\omega RC)^{2}}} e^{j(\omega t - \arctan(\omega RC))} \end{split}$$

Betrag und Phase

$$egin{aligned} &|\underline{u}_C(t)| = rac{\hat{U}}{\sqrt{1+(\omega RC)^2}} \ & ext{arg}\left\{ \underline{u}_C(t)
ight\} = \omega t - rctan\left(\omega RC
ight) = \omega t + arphi_0 \end{aligned}$$

Phasenwinkel

$$arphi_0 = -\arctan{(\omega RC)}$$

Berechnung der Phasoren für Spannung und Strom am Kondensator

Phasor des Stromes eilt dem Phasor der Kondensatorspannung um $\pi/2$ voraus

$$\underline{i}(t) = \underline{u}_C(t) \cdot \mathbf{j}\omega C = rac{\hat{U}\omega C}{\sqrt{1 + (\omega RC)^2}} \mathrm{e}^{\mathrm{j}(\omega t - \arctan{(\omega RC) + \frac{\pi}{2}})}$$

Phasor der Spannung über dem Widerstand R ist phasengleich zum Strom

$$\underline{u}_{R}(t) = \underline{i}(t) \cdot R = rac{\hat{U} \omega RC}{\sqrt{1 + (\omega RC)^2}} \mathrm{e}^{\mathrm{j}(\omega t - rctan\,(\omega RC) + rac{\pi}{2})}$$

 $u_C(t)$

 \boldsymbol{R}

 $u_R(t)$

u(t)

Phasoren für Spannung und Strom am Kondensator

Berechnung der Zeitverläufe

Copyright by Prof. Dr. Christian Siegl

Vergleich der Zeitverläufe

Komplexe Wechselstromrechnung

Eigenschaften der Phasordarstellung von Strömen und Spannungen

Vorteile der Phasordarstellung

- Vergleich von Amplitude und Phase ist leichter ersichtlich
- Differentialgleichungen lassen sich in algebraische Gleichungen umformen mittels

 $\frac{\mathrm{d}}{\mathrm{d}t}\longrightarrow\mathrm{j}\omega$

Nachteil der Phasordarstellung

– Vorstellung von rotierenden Zeigern ist gewöhnungsbedürftig und schwierig zu skizzieren.

Transformation des drehenden Phasors in statischen komplexen Zeiger

Phasor eines Spannungs- oder Stromverlaufes

$$\underline{x}(t) = \hat{X} \mathrm{e}^{\mathrm{j}(\omega t + arphi_0)}$$

Anhalten des rotierenden Phasors mittels Multiplikation mit $\mathrm{e}^{-\mathrm{j}\omega t}$

$$\underline{X} = \underline{x}(t) \cdot e^{-j\omega t} = \hat{X}e^{j(\omega t + \varphi_0)} \cdot e^{-j\omega t} = \hat{X} \cdot e^{j\omega t} \cdot e^{j\varphi_0} \cdot e^{-j\omega t} = \hat{X}e^{j\varphi_0} \cdot e^{j\omega t} \cdot e^{-j\omega t} =$$

= $\hat{X}e^{j\varphi_0}$

Interpretation des statischen Zeigers

Verschiedene Interpretationsmöglichkeiten

- 1. Anhalten des rotierenden Phasors durch Multiplikation mit Phasor $e^{-j\omega t}$ in entgegengesetzte Richtung
- 2. Rotieren des Koordinatensystems (Bezugssystem) mit gleicher Kreisfrequenz wie Phasor

Komplexe Wechselstromrechnung I

Unter *komplexer Wechselstromrechnung* versteht man die Transformation sinusförmiger Schwingungen in statische komplexe Zeiger. Die resultierende Transformation besteht aus

- 1. Transformation in den Phasor Bereich
- 2. Transformation in den Frequenzbereich (statischen komplexen Zeiger) mit Transformationsfrequenz ω

Komplexe Wechselstromrechnung II

Die Bestimmung des statischen Phasors im Frequenzbereich kann auch direkt aus dem Zeitbereich erfolgen

Anmerkung:

- Ausgangspunkt im Zeitbereich kann auch mittels $\cos()$ -Funktion erfolgen
- Rücktransformation wird dann über $\operatorname{Re}\{\cdot\}$ gebildet

Komplexe Wechselstromrechnung III

Transformation eines allgemeinen Zeitsignals x(t) in komplexen Zeiger durch Vergleich von Amplitude und Phase

 $x(t) = \hat{X} \cdot \sin(\omega t + arphi_0) \quad o \quad \underline{X} = \hat{X} \cdot \mathrm{e}^{\mathrm{j}arphi_0} \quad o \quad x(t) = \mathrm{Im}\left\{ \underline{U} \cdot \mathrm{e}^{\mathrm{j}\omega t}
ight\}$

 $x(t) = \hat{X} \cdot \cos(\omega t + arphi_0) \quad o \quad \underline{X} = \hat{X} \cdot \mathrm{e}^{\mathrm{j} arphi_0} \quad o \quad x(t) = \mathrm{Re} \left\{ \underline{U} \cdot \mathrm{e}^{\mathrm{j} \omega t}
ight\}$

Wahl der Ausgangsfunktion $\sin(\cdot)$ oder $\cos(\cdot)$ hat

- *keinen* Einfluss auf den komplexen Zeiger
- Rücktransformation wird entsprechend durch $\mathrm{Im}\{\cdot\}$ bzw. $\mathrm{Re}\{\cdot\}$ gebildet

Falls Ausgangsfunktion

 $\sin(\cdot) \Rightarrow R\ddot{u}cktransformation mittels Im\{\cdot\}$

$$\cos(\cdot) \Rightarrow$$
 Rücktransformation mittels Re{ \cdot }

Copyright by Prof. Dr. Christian Siegl

Komplexe Wechselstromrechnung IV

Transformation der Bauelemente Widerstand, Kondensator und Induktivität

$$egin{array}{rcl} R & \longrightarrow & {\underline{Z}}_R(\omega) & = & R \ C & \longrightarrow & {\underline{Z}}_C(\omega) & = & rac{1}{{
m j}\omega C} \ L & \longrightarrow & {\underline{Z}}_L(\omega) & = & {
m j}\omega L \end{array}$$

Dabei gelten die gleichen Regeln wie bei reellen elektrischen Widerständen:

- Serien- und Paralleschaltung
- Kirchhoff'sche Gesetze (Maschen- und Knotenregel)
- Strom- und Spannungsteiler

Zusammenfassung Berechnung von Spannung und Strom mittels komplexer Zeiger

	Ohm'scher Widerstand	Kondensator	Induktivität
Impedanz	$\underline{Z}_R = R$	$\underline{Z}_C = rac{1}{\mathrm{j}\omega C}$	$\underline{Z}_L=\mathrm{j}\omega L$
Admittanz	$\underline{Y}_R = 1/R$	$\underline{Y}_C = \mathrm{j}\omega C$	$\underline{Y}_L = rac{1}{\mathrm{j}\omega L}$
Zeigerdiagramm	Im <u>I</u> <u>U</u> Re	Im I U Re	Im <u>U</u> Re <u>I</u>

Mit Hilfe der komplexen Zeiger lässt sich ein elektrisches Netzwerk, bestehend aus Ohm'schen Widerständen, Kondensatoren und Induktivitäten wie ein Gleichstrom-Widerstandsnetzwerk mit den jeweiligen komplexen Impedanzen berechnen.

Vorgehen zur Berechnung von Netzwerken mit komplexer Wechselstromrechnung

Gegeben: Strom- oder Spannungsverlauf (allgemein x(t)) im Zeitbereich:

- $x(t) = \hat{X}\sin(\omega t + arphi_x)$
- 1. Transformation der Zeitbereichs-Größen in den Zeigerbereich (Frequenzbereich)

$$\underline{X} = \left(\hat{X}\cos(\omega t + arphi_x) + \mathrm{j}\hat{X}\sin(\omega t + arphi_x)
ight) \cdot \mathrm{e}^{-\mathrm{j}\omega t} = \hat{X} \cdot \mathrm{e}^{\mathrm{j}\omega t + \mathrm{j}arphi_x} \cdot \mathrm{e}^{-\mathrm{j}\omega t} = \hat{X}\mathrm{e}^{\mathrm{j}arphi_x}$$

2. Transformation der Netzwerkelemente in komplexe Impedanzen

- 3. Berechnen aller gesuchten Ströme und Spannungen im Netzwerk
- 4. Rücktransformation in den Zeitbereich mittels

$$x(t) = \operatorname{Im} \left\{ \underline{X} \cdot \mathrm{e}^{\mathrm{j}\omega t}
ight\}$$

Beispiel: Berechnung eines RC-Netzwerkes I

Berechnung aller Zeitverläufe von Strom und Spannung eines einfachen RC-Netzwerkes

Gegeben: Zeitverlauf der Spannungsquelle:

$$u(t) = \hat{U}\sin(\omega t)$$

Zahlenwerte: $\hat{U} = 5 \,\mathrm{V}$ $R = 0.5 \,\Omega$ $C = 2 \,\mathrm{mF}$ $f = 150 \,\mathrm{Hz} \, \Rightarrow \, \omega = 942 \, rac{\mathrm{rad}}{\mathrm{s}}$

Gesucht: Zeitverläufe der Spannungen $u_R(t)$, $u_C(t)$ und des Stromes i(t)

Beispiel: Berechnung eines RC-Netzwerkes II

- 1. Transformation der Spannungsquelle
 - $u(t) = \hat{U}\sin(\omega t) \quad \longrightarrow \quad \underline{U} = \hat{U} = 5\,\mathrm{V}$

(Ausgangsfunktion ist $\sin(\cdot)$ damit wird die Rücktransformation in Schritt 4 mit $\mathrm{Im}\{\cdot\}$ gebildet)

2. Transformation des elektrischen Netzwerkes

Beispiel: Berechnung eines RC-Netzwerkes III

3. Berechnung aller Netzwerkgrößen

$$\begin{split} \underline{I} &= \frac{\underline{U}}{\underline{Z}_{\text{ges}}} = \frac{\underline{U}}{\underline{Z}_{R} + \underline{Z}_{C}} = \frac{\hat{U}}{R + \frac{1}{j\omega C}} = \frac{\hat{U} \cdot j\omega C}{1 + j\omega RC} \cdot \frac{1 - j\omega RC}{1 - j\omega RC} = \frac{\hat{U} \cdot R(\omega C)^{2}}{1 + (\omega RC)^{2}} + j \cdot \frac{\hat{U} \cdot \omega C}{1 + (\omega RC)^{2}} = \\ &= 4,53 \text{ A} + j \cdot 6,01 \text{ A} = 7,53 \text{ A} \cdot e^{j \cdot 0,9248} \\ \underline{U}_{R} &= R \cdot \underline{I} = \frac{\hat{U} \cdot (\omega RC)^{2}}{1 + (\omega RC)^{2}} + j \cdot \frac{\hat{U} \cdot \omega RC}{1 + (\omega RC)^{2}} = \\ &= 1,81 \text{ V} + j \cdot 2,40 \text{ V} = 3,01 \text{ V} \cdot e^{j \cdot 0,9248} \\ \underline{U}_{C} &= \frac{1}{j\omega C} \cdot \underline{I} = \frac{1}{j\omega C} \cdot \left(\frac{\hat{U} \cdot R(\omega C)^{2}}{1 + (\omega RC)^{2}} + j \cdot \frac{\hat{U} \cdot \omega C}{1 + (\omega RC)^{2}}\right) = \frac{\hat{U}}{1 + (\omega RC)^{2}} - j \cdot \frac{\hat{U} \cdot \omega RC}{1 + (\omega RC)^{2}} = \\ &= 3,19 \text{ V} + j \cdot 2,40 \text{ V} = 3,99 \text{ V} \cdot e^{-j \cdot 0,6460} \end{split}$$

Beispiel: Berechnung eines RC-Netzwerkes IV

Beispiel: Berechnung eines RC-Netzwerkes V

4. Rücktransformation in den Zeitbereich

$$\begin{split} i(t) &= \operatorname{Im} \left\{ \underline{I} \cdot e^{j\omega t} \right\} = \operatorname{Im} \left\{ 7,53 \operatorname{A} \cdot e^{j \cdot 0,9248} \cdot e^{j\omega t} \right\} = \operatorname{Im} \left\{ 7,53 \operatorname{A} \cdot e^{j(\omega t+0,9248)} \right\} = \\ &= \operatorname{Im} \left\{ 7,53 \operatorname{A} \cdot (\cos(\omega t+0,9248) + j \cdot \sin(\omega t+0,9248)) \right\} = \\ &= 7,53 \operatorname{A} \cdot \sin(\omega t+0,9248) \\ u_R(t) &= \operatorname{Im} \left\{ \underline{U}_R \cdot e^{j\omega t} \right\} = \operatorname{Im} \left\{ 3,01 \operatorname{V} \cdot e^{j \cdot 0,9248} \cdot e^{j\omega t} \right\} = \operatorname{Im} \left\{ 3,01 \operatorname{V} \cdot e^{j(\omega t+0,9248)} \right\} = \\ &= 3,01 \operatorname{V} \cdot \sin(\omega t+0,9248) \\ u_C(t) &= \operatorname{Im} \left\{ \underline{U}_C \cdot e^{j\omega t} \right\} = \operatorname{Im} \left\{ 3,99 \operatorname{V} \cdot e^{-j \cdot 0,6460} \cdot e^{j\omega t} \right\} = \operatorname{Im} \left\{ 3,99 \operatorname{V} \cdot e^{j(\omega t-0,6460)} \right\} = \\ &= 3,99 \operatorname{V} \cdot \sin(\omega t+0,6460) \end{split}$$

Beispiel: Berechnung eines RC-Netzwerkes VI

Konstruktion des Zeigerdiagramms

- 1. Stromzeiger aller Elemente \underline{I}
- 2. Spannungszeiger des Widerstandes in Phase zum Strom $\underline{U}_R = R \cdot \underline{I}$
- 3. Spannungszeiger des Kondensators \underline{U}_C
 - läuft Stromzeiger um 90° bzw. $\pi/2$ nach
- 4. Kreis um Spitze von \underline{U}_R mit Radius \hat{U}
- 5. Zeiger der Kondensatorspannung ergibt sich aus Schnittpunkt
- 6. Quellspannung resultiert aus

 $\underline{U} = \underline{U}_R + \underline{U}_C$

Komplexe Wechselstromrechnung

Vorteile der Anwendung der komplexen Wechselstromrechnung

- Vergleich von Amplitude und Phase ist leicht ersichtlich
- Differentialgleichungen lassen sich in algebraische Gleichungen umformen mittels

 $\frac{\mathrm{d}}{\mathrm{d}t}\longrightarrow\mathrm{j}\omega$

- Statische Zeiger lassen sich einfach skizzieren
- Geometrische Konstruktion der Zeigerdiagramme
- Analyse elektrischer Netzwerke bei unterschiedlichen Frequenzen

Elektrische Leistung in Wechselstromnetzwerken

Leistung am Elektrischen Widerstand

Momentanleistung im Zeitbereich:

 $p(t) = u(t) \cdot i(t)$

Leistungsaufname eines elektrischen Widerstandes

$$p(t) = u(t) \cdot i(t) = \hat{U}\sin(\omega t) \cdot \hat{I}\sin(\omega t) = \hat{U}\hat{I} \cdot \sin^2(\omega t) = rac{\hat{U}\hat{I}}{2}\left(1-\cos(2\omega t)
ight)$$

- Leistung schwankt über die Zeit mit der *doppelten* Frequenz
- Leistungsaufnahme des Widerstandes ist stets positiv ($p(t) \geq 0$)

Mittlere Leistungsaufnahme (sog. Wirkleistung da Umsetzung in mechanische Leistung, hier Wärmeleistung)

$$P = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} u(t) \cdot i(t) \mathrm{d}t = rac{\hat{U}\hat{I}}{2} \lim_{T o \infty} rac{1}{T} \left[t - rac{1}{2\omega} \sin(2\omega t)
ight]_{-T/2}^{T/2} = rac{\hat{U}\hat{I}}{2}$$

R

Zeitlicher Verlauf der Leistung am Elektrischen Widerstand

Effektivwert

Im Gleichstromnetzwerk ist die Leistungsaufnahme konstant

$$P = U \cdot I$$

Gleiche Definition erhält man für die mittlere Leistung im Wechselstromnetz bei Verwendung von *Effektivwerten*

$$P = rac{\hat{U}\hat{I}}{2} = U_{ ext{eff}} \cdot I_{ ext{eff}} \quad ext{mit} \quad U_{ ext{eff}} = rac{\hat{U}}{\sqrt{2}} \quad ext{und} \quad I_{ ext{eff}} = rac{\hat{I}}{\sqrt{2}}$$

Aus diesem Grund werden Zeitveränderliche Spannungen und Ströme häufig definiert als

$$u(t)=\sqrt{2}U_{ ext{eff}}\sin(\omega t+arphi_u)$$

$$i(t)=\sqrt{2}I_{
m eff}\sin(\omega t+arphi_i)$$

Leistung am Kondensator

Momentanleisung am Kondensator

$$p(t) = u(t) \cdot i(t) = \hat{U} \cos(\omega t) \cdot \hat{I} \sin(\omega t) = rac{\hat{U}\hat{I}}{2} \sin(2\omega t)$$

Mittlere Leistungsaufnahme des Kondensators

$$P = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} p(t) \mathrm{d}t = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} rac{\hat{U}\hat{I}}{2} \sin(2\omega t) \mathrm{d}t = 0$$

Blindleistung

Mittlere Wirkleistungsaufnahme des Kondensators beträgt Null.

Innerhalb einer Periode des Strom- und Spannungsverlaufs wird zwei Mal die Leistung

$$rac{\hat{U}\hat{I}}{2}$$
 bzw. $U_{ ext{eff}}\cdot I_{ ext{eff}}$

aufgenommen und wieder abgegeben.

Diese Leistung wird als Blindleistung bezeichnet da sie nicht in

- mechanische Leistung
- thermische Leistung
- Information

umgesetzt werden kann und im elektrischen System verbleibt.

Leistung an der Induktivität

Momentanleisung an der Induktivität

$$p(t) = u(t) \cdot i(t) = \hat{U} \sin(\omega t) \cdot \hat{I} \cos(\omega t) = rac{\hat{U}\hat{I}}{2} \sin(2\omega t)$$

Mittlere Leistungsaufnahme der Induktivität

$$P = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} p(t) \mathrm{d}t = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} rac{\hat{U}\hat{I}}{2} \sin(2\omega t) \mathrm{d}t = 0$$

Allgemeine Berechnung der Wirkleistung

Betrachtung eines Sinus-förmigen Spannungs- und Stromverlaufes mit Phasendifferenz arphi

$$egin{aligned} u(t) &= \hat{U}\sin(\omega t + arphi) \ i(t) &= \hat{I}\sin(\omega t) \end{aligned}$$

Die Momentanleistung ergibt sich

$$p(t) = u(t) \cdot i(t) = \hat{U}\hat{I} \cdot \sin(\omega t + arphi) \sin(\omega t) = rac{\hat{U}\hat{I}}{2} \Big(\cos(arphi) - \cos(2\omega t + arphi)\Big)
onumber \ P = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} p(t) \mathrm{d}t = rac{\hat{U}\hat{I}}{2} \cos(arphi) = U_{\mathrm{eff}} I_{\mathrm{eff}} \cos(arphi)$$

– $\varphi = 0$ bzw. $\varphi = \pi$: Strom und Spannung phasengleich \Rightarrow reine *Wirkleistung*

- $\varphi = \pm \pi/2$: Wirkleistung ist Null \Rightarrow reine *Blindleistung*

Wirkleistung - Blindleistung - Scheinleistung

Wirkleistung (engl.: active power)

$$P = rac{1}{2} \hat{U} \hat{I} \cos(arphi) = U_{ ext{eff}} I_{ ext{eff}} \cos(arphi) \quad \left[ext{W}
ight]$$

Blindleistung (engl.: reactive power)

$$Q = rac{1}{2} \hat{U} \hat{I} \sin(arphi) = U_{ ext{eff}} I_{ ext{eff}} \sin(arphi) \quad igg[ext{var} igg]$$

Scheinleistung

$$S=rac{1}{2}\hat{U}\hat{I}=U_{ ext{eff}}I_{ ext{eff}}=\sqrt{P^2+Q^2}\quad \left[ext{VA}
ight]$$

Leistungsfaktor

$$\cos(\varphi) = \frac{P}{S}$$

Komplexe Leistung

Die Transformation in Phasor- und Frequenzbereich funktioniert lediglich für lineare Operationen. Trotzdem ist es möglich auch in diesen Bereichen die Wirk-, Blind- und Scheinleistung zu berechnen.

Betrachtet werden Phasoren für Spannung und Strom mit Phasendifferenz φ :

Im Phasor-Bereich gilt nun für die komplexe Scheinleistung

$$\begin{split} \underline{S} &= \frac{1}{2} \cdot \underline{u}(t) \cdot \underline{i}^*(t) = \frac{1}{2} \cdot \hat{U} e^{j(\omega t + \varphi)} \cdot \hat{I} e^{-j\omega t} = \frac{1}{2} \hat{U} \hat{I} e^{j\varphi} = \frac{1}{2} \hat{U} \hat{I} \cos(\varphi) + j \frac{1}{2} \hat{U} \hat{I} \sin(\varphi) \\ &= P + jQ \end{split}$$

Berechnung der komplexen Leistung mittels Effektivwerten

Häufig werden sogenannte Effektivwert-Phasoren definiert

 $\underline{u}_{ ext{eff}}(t) = U_{ ext{eff}} ext{e}^{ ext{j}(\omega t + arphi_u)}$

 $\underline{i}_{ ext{eff}}(t) = I_{ ext{eff}} \mathrm{e}^{\mathrm{j}(\omega t + arphi_i)}$

In diesem Fall gilt für die komplexe Scheinleistung

$$\underline{S} = \underline{u}_{\mathrm{eff}}(t) \cdot \underline{i}_{\mathrm{eff}}^{*}(t) = P + \mathrm{j}Q = U_{\mathrm{eff}}I_{\mathrm{eff}}\cos(\varphi) + \mathrm{j}U_{\mathrm{eff}}I_{\mathrm{eff}}\sin(\varphi)$$

Die komplexe Scheinleistung lässt sich auch mit statischen komplexen Zeigern berechnen

$$\underline{S} = rac{1}{2} \underline{U} \cdot \underline{I}^* = \underline{U}_{ ext{eff}} \cdot \underline{I}^*_{ ext{eff}}$$

Beispiel: Berechnung der Leistung in einem RC-Netz I

Gegeben: Reihenschaltung eines Widerstands R mit Kondensator C und sinusförmiger Spannungsquelle

Gesucht: Abgebene Wirk- und Blindleistung der Spannungsquelle

Annahme: Zeiger der Spannungsquelle ist Effekivwert-Zeiger $\underline{U} = U_{\text{eff}}$

$$\begin{split} \underline{S} &= \underline{U} \cdot \underline{I}^* = \underline{U} \cdot \left(\frac{\underline{U}}{R + \frac{1}{j\omega C}}\right)^* = \underline{U} \cdot \frac{\underline{U}^*}{R + \frac{1}{-j\omega C}} = \\ &= U_{\text{eff}}^2 \frac{-j\omega C}{1 - j\omega RC} = U_{\text{eff}}^2 \frac{-j\omega C}{1 - j\omega RC} \cdot \frac{1 + j\omega RC}{1 + j\omega RC} = \\ &= U_{\text{eff}}^2 \frac{-j\omega C + \omega^2 RC^2}{1 + (wRC)^2} = \\ &= U_{\text{eff}}^2 \frac{\omega^2 RC^2}{1 + (wRC)^2} - jU_{\text{eff}}^2 \frac{\omega C}{1 + (wRC)^2} \end{split}$$

Beispiel: Berechnung der Leistung in einem RC-Netz II

Wirkleistung: $P = U_{ ext{eff}}^2 rac{\omega^2 R C^2}{1 + (w R C)^2}$

Blindleistung: $Q = - U_{ ext{eff}}^2 rac{\omega C}{1 + (wRC)^2}$

Darstellung von Wirk- und Blindleistung im PQ-Diagramm

Referenzen

[1] G. Hagmann, Grundlagen der Elektrotechnik, Aula Verlag.

[2] R. Unbehauen, Grundlagen der Elektrotechnik 1, Springer Verlag.