Physikalische Größen und Einheitensysteme

Physikalische Größen I

Aufgabe der Physik:

- Ermittlung von Naturvorgängen durch systematisches Beobachten und Messen
- Beschreibung der Gesetzmäßigkeiten mittels mathematischer Formeln und Gleichungen

Beispiel: Beschreibung der Geschwindigkeit

$$v=rac{s}{t}$$

Verwendung physikalischer Größen:

- Geschwindikeit (engl. velocity): v
- Weg (lat. spatium oder engl. space): s
- Zeit (engl. time): t

Physikalische Größen II

Physikalische Größe beschreibt die messbare Eigenschaft eines

- Objektes (z.B. Masse, Ladung, etc.)
- Zustandes (z.B. Temperatur)
- Zustandsänderung (z.B. Geschwindigkeit)

Weiter Beispiele für physikalische Größen

- Mechanik: Beschleunigung, Kraft, Masse, Arbeit, etc.
- Wärmelehre: Temperatur, Druck, Entropie, etc.
- Elektrizitätslehre: Ladung, Strom, Spannung, etc.

Beschreibung physikalischer Größen

Physikalische Größe setzt sich zusammen aus

Zahlenwert · Einheit

Beispiel: Geschwindigkeit

$$v = 100 \cdot \frac{\mathrm{m}}{\mathrm{s}}$$

Beschreibung der Einheit einer physikalischen Größe

$$[v] = rac{ ext{m}}{ ext{s}}$$

Abgeleitete Einheiten (z.B. Gewichtskraft $F=m\cdot g$)

$$[F] = \mathrm{kg} \cdot rac{\mathrm{m}}{\mathrm{s}^2} = rac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^2} = \mathrm{Newton} = \mathrm{N}$$

SI-Basiseinheiten

Internationale Festlegung von sieben SI-Basiseinheiten (Le Système international d'unités)

Basisgröße	Basiseinheit	Formelzeichen
Zeit	Sekunde	s
Länge	Meter	m
Masse	Kilogramm	kg
Stromstärke	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candela	cd
Stoffmenge	Mol	mol

Abgeleitete Einheiten

Aus den SI-Basiseinheiten lassen sich sämtliche anderen Einheiten ableiten

Physikalische Größe	Einheit	Berechnung	Formelzeichen
Fläche	Quadratmeter	$A=$ Länge \cdot Breite	$\mathrm{m}^2=\mathrm{m}\cdot\mathrm{m}$
Geschwindigkeit	Meter pro Sekunde	v = Weg/Zeit	$\frac{\mathrm{m}}{\mathrm{s}}$
Kraft	Newton	$F=Masse\cdotBeschleunigung$	$N=\mathrm{kg}\cdotrac{\mathrm{m}}{\mathrm{s}^2}$
Arbeit	Joule	$W = Kraft \cdot Weg$	$ m J = kg \cdot rac{m^2}{s^2}$
Leistung	Watt	$P={\sf Arbeit/Zeit}$	$W=\mathrm{kg}\cdotrac{\mathrm{m}^2}{\mathrm{s}^4}$
Spannung	Volt	$V={\sf Arbeit/Ladung}$	$ m V=rac{kg\cdot m^2}{A\cdot s^3}$
•••	•••	•••	•••

Beschreibung von Zahlenbereichen mittels dezimaler Vielfachen und deren Präfixe

Zehnerpotenz	Vorsilbe	Präfix
10^{12}	Tera	Т
10^{9}	Giga	G
10^6	Mega	M
10^{3}	Kilo	k
10^2	Hekto	h
10^1	Deka	da
10^{-1}	Dezi	d
10^{-2}	Zenti	С
10^{-3}	Milli	m
10^{-6}	Mikro	μ
10^{-9}	Nano	n
10^{-12}	Piko	p

Referenzen

- [1] G. Hagmann, Grundlagen der Elektrotechnik, Aula Verlag.
- [2] E. Hering, R. Martin, M. Stohrer, *Physik für Ingenieure*, Springer Verlag.
- [3] R. Pregla, Grundlagen der Elektrotechnik, Hüthig Verlag.